skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roy-Chowdhury, Amrita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning models are increasingly used in societal applications, yet legal and privacy concerns demand that they very often be kept confidential. Consequently, there is a growing distrust about the fairness properties of these models in the minds of consumers, who are often at the receiving end of model predictions. To this end, we propose FairProof– a system that uses Zero-Knowledge Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while maintaining confidentiality. We also propose a fairness certification algorithm for fully-connected neural networks which is befitting to ZKPs and is used in this system. We implement FairProof in Gnark and demonstrate empirically that our system is practically feasible. 
    more » « less
  2. New advances in machine learning have made Automated Speech Recognition (ASR) systems practical and more scalable. These systems, however, pose serious privacy threats as speech is a rich source of sensitive acoustic and textual information. Although offline and open-source ASR eliminates the privacy risks, its transcription performance is inferior to that of cloud-based ASR systems, especially for real-world use cases. In this paper, we propose Prεεch, an end-to-end speech transcription system which lies at an intermediate point in the privacy-utility spectrum. It protects the acoustic features of the speakers’ voices and protects the privacy of the textual content at an improved performance relative to offline ASR. Additionally, Prεεch provides several control knobs to allow customizable utility-usability-privacy trade-off. It relies on cloud-based services to transcribe a speech file after applying a series of privacy-preserving operations on the user’s side. We perform a comprehensive evaluation of Prεεch, using diverse real-world datasets, that demonstrates its effectiveness. Prεεch provides transcription at a 2% to 32.25% (mean 17.34%) relative improvement in word error rate over Deep Speech, while fully obfuscating the speakers' voice biometrics and allowing only a differentially private view of the textual content. 
    more » « less